علوم و مهندسی آبیاری (Mar 2019)

Predicting Seepage of Earth Dams using Artificial Intelligence Techniques

  • Meysam Nouri,
  • Farzin Salmasi

DOI
https://doi.org/10.22055/jise.2017.21384.1537
Journal volume & issue
Vol. 42, no. 1
pp. 83 – 97

Abstract

Read online

The use of clay blanket in reservoirs is one of the main methods of seepage reducing. In this study, with clay blanket modeling in a proposed reservoir by finite element method, 350 dataset was obtained using SEEP/W. Validation of SEEP/W was carried out by comparing seepage results obtained from a laboratory tests. For evaluation of suitable model for predicting seepage values (results of modeling), used from five artificial intelligence techniques comprising: multilayer perceptron neural network (MLP), radial base function (RBF), gene expression programming (GEP), support vector regression (SVR) and a novel hybrid model of the firefly algorithm (FFA) with the multilayer perceptron (MLP-FFA). All the techniques were trained with 70% of available dataset and tested using the remaining 30% dataset. Different combinations of input data that include the ratio of the permeability coefficient of foundation to the permeability coefficient of clay blanket (K_f/K_b ), the ratio of the length of blanket to upstream head (L_1/H), the ratio of thickness of foundation to thickness of blanket (h_f/t), the ratio of length of blanket to thickness of core (L_1/L_2 ) and the ratio of horizontal to vertical permeability coefficient of foundation (K_(f_x )/K_(f_y ) ) were used for evaluation of mentioned methods. The results were evaluated using four performance criteria metrics: root mean square error (RMSE), mean absolute error (MAE), Nash-Sutcliffe efficiency (NS), Willmott’s Index of agreement (WI) and Taylor diagram. The results of study showed that the MLP-FFA method provides better estimation results than the other models and therefore, could be applied an optimized for predictive model of earth fill dam seepage.

Keywords