Scientific Reports (May 2022)

Applications of machine learning in pine nuts classification

  • Biaosheng Huang,
  • Jiang Liu,
  • Junying Jiao,
  • Jing Lu,
  • Danjv Lv,
  • Jiawei Mao,
  • Youjie Zhao,
  • Yan Zhang

DOI
https://doi.org/10.1038/s41598-022-12754-9
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Pine nuts are not only the important agent of pine reproduction and afforestation, but also the commonly consumed nut with high nutritive values. However, it is difficult to distinguish among pine nuts due to the morphological similarity among species. Therefore, it is important to improve the quality of pine nuts and solve the adulteration problem quickly and non-destructively. In this study, seven pine nuts (Pinus bungeana, Pinus yunnanensis, Pinus thunbergii, Pinus armandii, Pinus massoniana, Pinus elliottii and Pinus taiwanensis) were used as study species. 210 near-infrared (NIR) spectra were collected from the seven species of pine nuts, five machine learning methods (Decision Tree (DT), Random Forest (RF), Multilayer Perceptron (MLP), Support Vector Machine (SVM) and Naive Bayes (NB)) were used to identify species of pine nuts. 303 images were used to collect morphological data to construct a classification model based on five convolutional neural network (CNN) models (VGG16, VGG19, Xception, InceptionV3 and ResNet50). The experimental results of NIR spectroscopy show the best classification model is MLP and the accuracy is closed to 0.99. Another experimental result of images shows the best classification model is InceptionV3 and the accuracy is closed to 0.964. Four important range of wavebands, 951–957 nm, 1,147–1,154 nm, 1,907–1,927 nm, 2,227–2,254 nm, were found to be highly related to the classification of pine nuts. This study shows that machine learning is effective for the classification of pine nuts, providing solutions and scientific methods for rapid, non-destructive and accurate classification of different species of pine nuts.