Aquaculture Reports (Jun 2023)
Evidence of a divided nutritive function in rainbow Trout (Oncorhynchus mykiss) midgut and hindgut microbiomes by whole shotgun metagenomic approach
Abstract
The nutritive role and ecology of gut-dwelling microbes in rainbow trout remain enigmatic. To improve our understanding of the rainbow trout gastrointestinal tract (GIT) microbiome, we performed whole shotgun metagenomic analyses on the assembled contigs from luminal contents from both mid- and hind-GIT regions for taxonomic and functional classifications of fish-fed animal and plant protein dietary sources. Our study revealed that trout respond well to the two diets containing animal and plant protein sources when supplemented with essential amino acids to meet the requirements of the fish. Microbes present were predominantly bacteria (89.9%) and mainly of the phyla Tenericutes, Firmicutes, Fusobacteria, and Proteobacteria. Eukaryotic (8.8%) microbes were mainly from phyla Ascomycota and Basidiomycota, while Archaea (<1%) were also present and predominantly from the phylum Euryarchaeota. Comparisons of genus-level classifications and functional profiles revealed compositional differences in these GIT locations that appear modulated by differences in the dietary treatments. The functional analysis provided evidence of amino acid biosynthesis/catabolism and methane production in the mid-GIT, while in the hind-GIT, proteolytic hydrolysis and butyrate metabolism were expressed in the trout fed with plant protein diet. The animal protein-based diet provided metabolites for microbial protein fermentation in the hind-GIT. Our report highlights and identifies the potential nutritive contributions of GIT microbes to trout and a potentially crucial functional division along the GIT. Finally, the plant-based diet enhanced amino acid catabolism in the midgut section, while the hindgut section supports evidence of methanogen fermentation.