Plants (Jul 2024)

Exogenous Sodium Nitroprusside Affects the Redox System of Wheat Roots Differentially Regulating the Activity of Antioxidant Enzymes under Short-Time Osmotic Stress

  • Alsu Lubyanova,
  • Chulpan Allagulova

DOI
https://doi.org/10.3390/plants13141895
Journal volume & issue
Vol. 13, no. 14
p. 1895

Abstract

Read online

Nitric oxide (NO) is a multifunctional signalling molecule involved in the regulation of plant ontogenesis and adaptation to different adverse environmental factors, in particular to osmotic stress. Understanding NO-induced plant protection is important for the improvement of plant stress tolerance and crop productivity under global climate changes. The root system is crucial for plant survival in a changeable environment. Damages that it experiences under water deficit conditions during the initial developmental periods seriously affect the viability of the plants. This work was devoted to the comparative analysis of the pretreatment of wheat seedlings through the root system with NO donor sodium nitroprusside (SNP) for 24 h on various parameters of redox homeostasis under exposure to osmotic stress (PEG 6000, 12%) over 0.5–24 h. The active and exhausted solutions of SNP, termed as (SNP/+NO) and (SNP/−NO), respectively, were used in this work at a concentration of 2 × 10−4 M. Using biochemistry and light microscopy methods, it has been revealed that osmotic stress caused oxidative damages and the disruption of membrane cell structures in wheat roots. PEG exposure increased the production of superoxide (O2•−), hydrogen peroxide (H2O2), malondialdehyde (MDA), and the levels of electrolyte leakage (EL) and lipid peroxidation (LPO). Stress treatment enhanced the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), the excretion of proline, and the rate of cell death and inhibited their division. Pretreatment with (SNP/+NO) decreased PEG-induced root damages by differently regulating the antioxidant enzymes under stress conditions. Thus, (SNP/+NO) pretreatment led to SOD, APX, and CAT inhibition during the first 4 h of stress and stimulated their activity after 24 h of PEG exposure when compared to SNP-untreated or (SNP/−NO)-pretreated and stress-subjected plants. Osmotic stress triggered the intense excretion of proline by roots into the external medium. Pretreatment with (SNP/+NO) in contrast with (SNP/−NO) additionally increased stress-induced proline excretion. Our results indicate that NO is able to mitigate the destructive effects of osmotic stress on the roots of wheat seedlings. However, the mechanisms of NO protective action may be different at certain periods of stress exposure.

Keywords