AIMS Mathematics (Apr 2024)

Applying fixed point techniques to solve fractional differential inclusions under new boundary conditions

  • Murugesan Manigandan ,
  • Kannan Manikandan,
  • Hasanen A. Hammad ,
  • Manuel De la Sen

DOI
https://doi.org/10.3934/math.2024750
Journal volume & issue
Vol. 9, no. 6
pp. 15505 – 15542

Abstract

Read online

Many scholars have lately explored fractional-order boundary value issues with a variety of conditions, including classical, nonlocal, multipoint, periodic/anti-periodic, fractional-order, and integral boundary conditions. In this manuscript, the existence and uniqueness of solutions to sequential fractional differential inclusions via a novel set of nonlocal boundary conditions were investigated. The existence results were presented under a new class of nonlocal boundary conditions, Carathéodory functions, and Lipschitz mappings. Further, fixed-point techniques have been applied to study the existence of results under convex and non-convex multi-valued mappings. Ultimately, to support our findings, we analyzed an illustrative example.

Keywords