Entropy (Feb 2019)

Entropy Analysis for the Evaluation of Respiratory Changes Due to Asbestos Exposure and Associated Smoking

  • Paula M. Sá,
  • Hermano A. Castro,
  • Agnaldo J. Lopes,
  • Pedro L. Melo

DOI
https://doi.org/10.3390/e21030225
Journal volume & issue
Vol. 21, no. 3
p. 225

Abstract

Read online

Breathing is a complex rhythmic motor act, which is created by integrating different inputs to the respiratory centres. Analysing nonlinear fluctuations in breathing may provide clinically relevant information in patients with complex illnesses, such as asbestosis. We evaluated the effect of exposition to asbestos on the complexity of the respiratory system by investigating the respiratory impedance sample entropy (SampEnZrs) and recurrence period density entropy (RPDEnZrs). Similar analyses were performed by evaluating the airflow pattern sample entropy (SampEnV’) and recurrence period density entropy (RPDEnV’). Groups of 34 controls and 34 asbestos-exposed patients were evaluated in the respiratory impedance entropy analysis, while groups of 34 controls and 30 asbestos-exposed patients were investigated in the analysis of airflow entropy. Asbestos exposition introduced a significant reduction of RPDEnV’ in non-smoker patients (p < 0.0004), which suggests that the airflow pattern becomes less complex in these patients. Smoker patients also presented a reduction in RPDEnV’ (p < 0.05). These finding are consistent with the reduction in respiratory system adaptability to daily life activities observed in these patients. It was observed a significant reduction in SampEnV’ in smoker patients in comparison with non-smokers (p < 0.02). Diagnostic accuracy evaluations in the whole group of patients (including non-smokers and smokers) indicated that RPDEnV’ might be useful in the diagnosis of respiratory abnormalities in asbestos-exposed patients, showing an accuracy of 72.0%. In specific groups of non-smokers, RPDEnV’ also presented adequate accuracy (79.0%), while in smoker patients, SampEnV’ and RPDEnV’ presented adequate accuracy (70.7% and 70.2%, respectively). Taken together, these results suggest that entropy analysis may provide an early and sensitive functional indicator of interstitial asbestosis.

Keywords