SICE Journal of Control, Measurement, and System Integration (May 2018)
Model Predictive Control of a Separated Flow around a Circular Cylinder at a Low Reynolds Number
Abstract
This paper deals with model predictive control (MPC) of a separated flow around a 2D circular cylinder at a low Reynolds number. The magnitude of the radial velocity on a small region of the cylinder surface is regarded as the control input. Two different objective functions are considered for each optimization step. One corresponds to the viscous dissipation function, and the other is the deviation from the ideal potential flow. In numerical simulations, flow separation and vortex shedding are suppressed by feedback control obtained by MPC for both objective functions. Moreover, a clear reduction in a drag coefficient is also observed.
Keywords