An automated pipeline for extracting histological stain area fraction for voxelwise quantitative MRI-histology comparisons
Daniel Z.L. Kor,
Saad Jbabdi,
Istvan N. Huszar,
Jeroen Mollink,
Benjamin C. Tendler,
Sean Foxley,
Chaoyue Wang,
Connor Scott,
Adele Smart,
Olaf Ansorge,
Menuka Pallebage-Gamarallage,
Karla L. Miller,
Amy F.D. Howard
Affiliations
Daniel Z.L. Kor
Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom; Corresponding author.
Saad Jbabdi
Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom
Istvan N. Huszar
Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom
Jeroen Mollink
Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom
Benjamin C. Tendler
Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom
Sean Foxley
Department of Radiology, University of Chicago, Chicago, IL, United States of America
Chaoyue Wang
Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom
Connor Scott
Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
Adele Smart
Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom; Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
Olaf Ansorge
Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
Menuka Pallebage-Gamarallage
Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
Karla L. Miller
Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom
Amy F.D. Howard
Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom
The acquisition of MRI and histology in the same post-mortem tissue sample enables direct correlation between MRI and histologically-derived parameters. However, there still lacks a standardised automated pipeline to process histology data, with most studies relying on manual intervention. Here, we introduce an automated pipeline to extract a quantitative histological measure for staining density (stain area fraction, SAF) from multiple immunohistochemical (IHC) stains. The pipeline is designed to directly address key IHC artefacts related to tissue staining and slide digitisation. Here, the pipeline was applied to post-mortem human brain data from multiple subjects, relating MRI parameters (FA, MD, RD, AD, R2*, R1) to IHC slides stained for myelin, neurofilaments, microglia and activated microglia. Utilising high-quality MRI-histology co-registrations, we then performed whole-slide voxelwise comparisons (simple correlations, partial correlations and multiple regression analyses) between multimodal MRI- and IHC-derived parameters. The pipeline was found to be reproducible, robust to artefacts and generalisable across multiple IHC stains. Our partial correlation results suggest that some simple MRI-SAF correlations should be interpreted with caution, due to the co-localisation of other tissue features (e.g., myelin and neurofilaments). Further, we find activated microglia—a generic biomarker of inflammation—to consistently be the strongest predictor of high DTI FA and low RD, which may suggest sensitivity of diffusion MRI to aspects of neuroinflammation related to microglial activation, even after accounting for other microstructural changes (demyelination, axonal loss and general microglia infiltration). Together, these results show the utility of this approach in carefully curating IHC data and performing multimodal analyses to better understand microstructural relationships with MRI.