Remote Sensing (Sep 2022)
Creation of Wildfire Susceptibility Maps in Plumas National Forest Using InSAR Coherence, Deep Learning, and Metaheuristic Optimization Approaches
Abstract
Plumas National Forest, located in the Butte and Plumas counties, has experienced devastating wildfires in recent years, resulting in substantial economic losses and threatening the safety of people. Mapping damaged areas and assessing wildfire susceptibility are necessary to prevent, mitigate, and manage wildfires. In this study, a wildfire susceptibility map was generated using a CNN and metaheuristic optimization algorithms (GWO and ICA) based on images of areas damaged by wildfires. The locations of damaged areas were identified using the damage proxy map (DPM) technique from Sentinel-1 synthetic aperture radar (SAR) data collected from 2016 to 2020. The DPMs’ depicting areas damaged by wildfires were similar to fire perimeters obtained from the California Department of Forestry and Fire Protection (CAL FIRE). Data regarding damaged areas were divided into a training set (50%) for modeling and a testing set (50%) for assessing the accuracy of the models. Sixteen conditioning factors, categorized as topographical, meteorological, environmental, and anthropological factors, were selected to construct the models. The wildfire susceptibility models were evaluated using the area under the receiver operating characteristic (ROC) curve (AUC) and root mean square error (RMSE) analysis. The evaluation results revealed that the hybrid-based CNN-GWO model (AUC = 0.974, RMSE = 0.334) exhibited better performance than the CNN (AUC = 0.934, RMSE = 0.780) and CNN-ICA (AUC = 0.950, RMSE = 0.350) models. Therefore, we conclude that optimizing a CNN with metaheuristics considerably increased the accuracy and reliability of wildfire susceptibility mapping in the study area.
Keywords