Materials & Design (Mar 2023)

Combined granulation–alkali activation–direct foaming process: A novel route to porous geopolymer granules with enhanced adsorption properties

  • Yangmei Yu,
  • Priyadharshini Perumal,
  • Ian J. Corfe,
  • Tirthankar Paul,
  • Mirja Illikainen,
  • Tero Luukkonen

Journal volume & issue
Vol. 227
p. 111781

Abstract

Read online

High-value applications, such as adsorbents, have drawn attention to geopolymers. In several of those applications, having the geopolymer as porous spherical particles is beneficial. This study presents a novel process for fabricating porous metakaolin-based geopolymer granules using a combination of direct foaming, one-part alkali activation, and granulation. In short, the precursor (e.g., metakaolin) and solid activator (e.g., sodium silicate) are loaded in a granulator, in which an aqueous blowing agent (e.g., H2O2) is added while the granulator is running, and the obtained granules are cured at 60 °C. Characterization of the granules for physico-chemical and morphological properties indicated an increase in overall porosity, especially in the µm-scale pores. Also specific surface area (+50%) and nanoscale pore volume (+102%) increased when using more concentrated H2O2 (20 or 30%) compared to nonporous granules. The use of porous granules was also demonstrated in dynamic adsorption experiments for ammonium (NH4+) uptake, which showed up to ∼126% increase in cumulative adsorption amount compared to nonporous granules. The highest NH4+ uptake was obtained with 10% H2O2 solution as the granulation fluid. The results confirmed the feasibility of the method for introducing porosity to geopolymer granules, which enhances the adsorption properties of the granules.

Keywords