Scientific Reports (Feb 2024)

Maximizing solar radiations of PV panels using artificial gorilla troops reinforced by experimental investigations

  • Ashraf K. Abdelaal,
  • Amira I. A. Alhamahmy,
  • Hossam El Deen Attia,
  • Attia A. El-Fergany

DOI
https://doi.org/10.1038/s41598-024-53873-9
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 13

Abstract

Read online

Abstract This article's main objective is to maximize solar radiations (SRs) through the use of the gorilla troop algorithm (GTA) for identifying the optimal tilt angle (OTA) for photovoltaic (PV) panels. This is done in conjunction with an experimental work that consists of three 100 W PV panels tilted at three different tilt angles (TAs). The 28°, 30°, and 50° are the three TAs. The experimental data are collected every day for 181-day and revealed that the TA of 28° is superior to those of 50° and 30°. The GTA calculated the OTA to be 28.445°, which agrees with the experimental results, which show a TA of 28°. The SR of the 28o TA is 59.3% greater than that of the 50° TA and 4.5% higher than that of the 30° TA. Recent methods are used to compare the GTA with the other nine metaheuristics (MHTs)—the genetic algorithm, particle swarm, harmony search, ant colony, cuckoo search, bee colony, fire fly, grey wolf, and coronavirus disease optimizers—in order to figure out the optimal OTA. The OTA is calculated by the majority of the nine MHTs to be 28.445°, which is the same as the GTA and confirms the experimental effort. In only 181-day, the by experimentation it may be documented SR difference between the TAs of 28° and 50° TA is 159.3%. Numerous performance metrics are used to demonstrate the GTA's viability, and it is contrasted with other recent optimizers that are in competition.

Keywords