Virology Journal (May 2024)

Proof of stability of an RSV Controlled Human Infection Model challenge agent

  • Sandra Verstraelen,
  • Dirk Roymans,
  • An Jacobs,
  • Karen Hollanders,
  • Sylvie Remy,
  • Dirk Jochmans,
  • Jelle Klein,
  • Tini Grauwet

DOI
https://doi.org/10.1186/s12985-024-02386-y
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 11

Abstract

Read online

Abstract In 2018, SGS Belgium NV developed RSV-NICA (Respiratory Syncytial Virus-Nasobronchial Infective Challenge Agent), an RSV type A challenge agent for use in RSV Controlled Human Infection Model (CHIM) studies. It is widely recognized that the stability of RSV can be influenced by a variety of environmental parameters, such as temperature and pH. Consequently, our objective was to evaluate the stability of the viral titer of RSV-NICA following five years of controlled storage and to determine the uniformity of the viral titers across different vials of a GMP-qualified batch of RSV-NICA. In addition, we examined the capacity of RSV-NICA to infect human primary airway epithelial cells (MucilAir™), the principal target cells of RSV, and evaluated the influence of single and recurrent freeze–thaw cycles on the infectious viral titer of the challenge agent. The aliquoted RSV-NICA virus stock was subjected to standard virological and molecular methods to gather data on the titer and consistency of the viral titer contained within 24 representative vials of the stock. Our findings illustrate that over a span of five years of cryo-storage, the infectious viral titer in 75% of the tested vials exhibited a comparable average infectious viral titer (4.75 ± 0.06 vs 4.99 ± 0.11; p-value = 0.14). A considerable reduction down to an undetectable level of infectious virus was observed in the remaining vials. RSV-NICA demonstrated its capacity to effectively infect differentiated human airway epithelial cells, with active virus replication detected in these cells through increasing RSV genome copy number over time. Virus tropism for ciliated cells was suggested by the inhibition of cilia beating coupled with an increase in viral RNA titers. No discernable impact on membrane barrier function of the epithelial lung tissues nor cytotoxicity was detected. Pooling of vials with infectious titers > 4.0 log10 TCID50/ml and freeze-thawing of these combined vials showed no deterioration of the infectious titer. Furthermore, pooling and re-aliquoting of vials spanning the entire range of viral titers (including vials with undetectable infectious virus) along with subjecting the vials to three repeated freeze–thaw cycles did not result in a decrease of the infectious titers in the tested vials. Taken together, our findings indicate that long-term cryo-storage of vials containing RSV-NICA challenge agent may influence the infectious viral titer of the virus, leading to a decrease in the homogeneity of this titer throughout the challenge stock. However, our study also demonstrates that when heterogeneity of the infectious titer of an RSV stock is observed, rounds of pooling, re-aliquoting and subsequent re-titration serve as an effective method not only to restore the homogeneity of the infectious titer of an RSV-A stock, but also to optimize patient-safety, scientific and operational aspects of viral inoculation of study participants during at least the period of one RSV CHIM trial. RSV-NICA is a stable, suitable CHIM challenge agent that can be utilized in efficacy trials for RSV vaccines and antiviral entities.

Keywords