Molecules (Nov 2021)

Dynamic Effect of Operational Regulation on the Mesophilic BioMethanation of Grape Marc

  • Josue Kassongo,
  • Esmaeil Shahsavari,
  • Andrew S. Ball

DOI
https://doi.org/10.3390/molecules26216692
Journal volume & issue
Vol. 26, no. 21
p. 6692

Abstract

Read online

Wine production annually generates an estimated 11 million metric tonnes of grape marc (GM) worldwide. The diversion of this organic waste away from landfill and towards its use in the generation of renewable energy has been investigated. This study aimed to evaluate the effectiveness of operational parameters relating to the treatment regime and inoculum source in the extraction of methane from GM under unmixed anaerobic conditions at 35 °C. The study entailed the recirculation of a previously acclimated sludge (120 days) as downstream inoculum, an increased loading volume (1.3 kg) and a low substrate-to-inoculum ratio (10:3 SIR). The results showed that an incorporation of accessible operational controls can effectively enhance cumulative methane yield (0.145 m3 CH4 kg−1 VS), corresponding to higher amounts of digestible organics converted. The calculated average volumetric methane productivity equalled 0.8802 L CH4 LWork−1 d−1 over 33.6 days whilst moderate pollutant removal (43.50% COD removal efficiency) was achieved. Molecular analyses identified Firmicutes and Bacteroidetes phyla as core organisms for hydrolytic and fermentative stages in trophic relationships with terminal electron acceptors from the methane-producing Methanosarcina genus. Economic projections established that the cost-effective operational enhancements were sustainable for valorisation from grape marc by existing wineries and distilleries.

Keywords