Scientific Reports (Jan 2023)

Sign change in c-axis thermal expansion constant and lattice collapse by Ni substitution in transition-metal zirconide superconductor Co1−x Ni x Zr2

  • Yuto Watanabe,
  • Hiroto Arima,
  • Hidetomo Usui,
  • Yoshikazu Mizuguchi

DOI
https://doi.org/10.1038/s41598-023-28291-y
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Recently, c-axis negative thermal expansion (NTE) was observed in a CoZr2 superconductor and related transition-metal zirconides. Here, we investigated the structural, electronic, and superconducting properties of Co1−x Ni x Zr2 to achieve systematic control of c-axis NTE and switching from NTE to positive thermal expansion (PTE) by Ni substitution. At x ≤ 0.3, c-axis NTE was observed, and the thermal expansion constant α c approached zero with increasing x. At x = 0.4–0.6, c-axis thermal expansion close to zero thermal expansion (ZTE) was observed, and PTE appeared for x ≥ 0.7. On the superconducting properties, we observed bulk superconductivity for x ≤ 0.6, and bulk nature of superconductivity is suppressed by Ni heavy doping (x ≥ 0.7). For x ≤ 0.6, the evolution of the electronic density of states well explains the change in the superconducting transition temperature (T c), which suggests conventional phonon-mediated superconductivity in the system. By analyzing the c/a ratio, we observed a possible collapsed transition in the tetragonal lattice at around x = 0.6–0.8. The lattice collapse would be the cause of the suppression of superconductivity in Ni-rich Co1−x Ni x Zr2 and the switching from NTE to PTE.