PLoS ONE (Jan 2014)
The inversion of the Control Region in three mitogenomes provides further evidence for an asymmetric model of vertebrate mtDNA replication.
Abstract
Mitochondrial genomes are known to have a strong strand-specific compositional bias that is more pronounced at fourfold redundant sites of mtDNA protein-coding genes. This observation suggests that strand asymmetries, to a large extent, are caused by mutational asymmetric mechanisms. In vertebrate mitogenomes, replication and not transcription seems to play a major role in shaping compositional bias. Hence, one can better understand how mtDNA is replicated--a debated issue--through a detailed picture of mitochondrial genome evolution. Here, we analyzed the compositional bias (AT and GC skews) in protein-coding genes of almost 2,500 complete vertebrate mitogenomes. We were able to identify three fish mitogenomes with inverted AT/GC skew coupled with an inversion of the Control Region. These findings suggest that the vertebrate mitochondrial replication mechanism is asymmetric and may invert its polarity, with the leading-strand becoming the lagging-strand and vice-versa, without compromising mtDNA maintenance and expression. The inversion of the strand-specific compositional bias through the inversion of the Control Region is in agreement with the strand-displacement model but it is also compatible with the RITOLS model of mtDNA replication.