Land (Jun 2023)
Land Use and Climate Change Effects on Streamflow and Nutrient Loads in a Temperate Catchment: A Simulation Study
Abstract
Climate and land use changes impact catchment hydrology and water quality (WQ), yet few studies have investigated the amount of land use changes required to meet specific WQ targets under future climate projections. The aim of this study was to determine streamflow and nutrient load responses to future land use change (LUC) and climate change scenarios. We hypothesized that (1) increasing forest coverage would decrease nutrient loads, (2) climate change, with higher temperatures and more intense storms, would lead to increased flow and nutrient loads, and (3) LUC could moderate potential nutrient load increases associated with climate change. We tested these hypotheses with the Soil and Water Assessment Tool (SWAT), which was applied to a lake catchment in New Zealand, where LUC strategies with afforestation are employed to address lake WQ objectives. The model was calibrated from 2002 to 2005 and validated from 2006 to 2010 using measured streamflow (Q) and total nitrogen (TN), total phosphorus (TP), nitrate (NO3-N), and ammonium (NH4-N) concentrations of three streams in the catchment. The model performance across the monitored streams was evaluated using coefficient of determination (R2) and Nash–Sutcliffe efficiency (NSE) metrics to provide a basis for model projections. Future scenarios incorporated LUC and climate change (CC) based on the Representative Concentration Pathway 8.5 and were compared to the baseline streamflow and WQ indicators. Consistent with our hypotheses, Q, TN, and TP loads were predicted to decrease with afforestation. Specifically, afforestation of 1.32 km2 in one of the monitored stream sub-catchments (subbasin 3), or 8.8% of the total lake catchment area, would result in reductions of 11.9, 26.2, and 17.7% in modeled annual mean Q, TN, and TP loads, respectively. Furthermore, when comparing simulations based on baseline and projected climate, reductions of 13.6, 22.8, and 19.5% were observed for Q, TN, and TP loads, respectively. Notably, the combined implementation of LUC and CC further decreased Q, TN, and TP loads by 20.2, 36.7, and 28.5%, respectively. This study provides valuable insights into the utilization of LUC strategies to mitigate nutrient loads in lakes facing water quality challenges, and our findings could serve as a prototype for other lake catchments undergoing LUC. Contrary to our initial hypotheses, we found that higher precipitation and temperatures did not result in increased flow and nutrient loading.
Keywords