Geosciences (Feb 2024)

Provenance of Detrital Rutiles from the Triassic–Jurassic Sandstones in Franz Josef Land (Barents Sea Region, Russian High Arctic): U-Pb Ages and Trace Element Geochemistry

  • Victoria Ershova,
  • Andrei Prokopiev,
  • Daniel Stockli

DOI
https://doi.org/10.3390/geosciences14020041
Journal volume & issue
Vol. 14, no. 2
p. 41

Abstract

Read online

Provenance study plays an important role in paleogeographic and tectonic reconstructions. Detrital zircons are commonly used to identify sediment provenance; however, a wide range of detrital zircon ages in clastic rock often represent a fingerprint of reworked older terrigenous successions rather than ages of magmatism and metamorphism in the provenance area. This study focuses on the provenance of detrital rutile grains in the Triassic–Jurassic sandstones from Franz Josef Land and shows the importance of multiproxy approaches for provenance studies. Trace element data demonstrate that most rutile grains were sourced from metapelitic rocks, with a subordinate population having a metamafic origin. The Zr-in-rutile thermometer and U-Pb geochronology suggest that detrital rutile grains were predominantly derived from rocks that underwent amphibolite facies metamorphism during the Paleozoic era, with a predominance of the Carboniferous–Permian ages. Therefore, we suggest that the provenance area for the studied sandstones on Franz Josef Land has a similar geological history to the Taimyr region and Severnaya Zemlya archipelago. We propose that this crustal domain extends across the Kara Sea and forms the basement to the north and east of FJL, representing a proximal provenance for the studied Mesozoic terrigenous rocks. This domain experienced both Middle–Late Ordovician and Carboniferous–Permian metamorphism. The comparison of U-Pb dating and the geochemistry of rutile, U-Th/He, and U-Pb dating of zircons showed that detrital rutiles are the powerful toll in provenance restoration and can give additional constrains when a provenance area locates within collisional-convergent settings.

Keywords