Heliyon (Jun 2024)

Fabrication and evaluation of a bi-layered electrospun PCL/PVA patch for wound healing: Release of vitamins and silver nanoparticle

  • Amirali Iranpour Mobarakeh,
  • Ali Shahmoradi Ramsheh,
  • Ali Khanshan,
  • Samira Aghaei,
  • Mahnaz Sadat Mirbagheri,
  • Javad Esmaeili

Journal volume & issue
Vol. 10, no. 12
p. e33178

Abstract

Read online

There is still little research on the co-delivery of vitamins and AgNPs to accelerate wound healing. In this study, a bi-layered electrospun PCL/PVA patch loaded with Vitamin C, Vitamin B12, and AgNPs was fabricated using a co-spinning technique. SEM, FTIR, degradation, swelling, tensile strength, disk diffusion, and MTT assay were studied. Nine rats were placed in three groups (control: no treatment, G1: without agents, and G2: with agents) for 14 days in an in-vivo study. H&E and Masson Trichrome staining were employed for histological analysis. Results showed that the final electrospun wound dressings depicted nanofibers with diameters ranging from 100 to 500 nm. The presence of AgNP enhanced the mechanical strength (40–50 MPs). An appropriate swelling (100 %) and degradation (50 %) rate was observed for groups with no significant difference (P > 0.05). G1 and G2 did not show a significant difference in terms of porosity (65 % vs. 69 %). Regarding WVTR, G2 demonstrated higher WVTR (88 vs. 95 g/m2. h). G2 showed a vitamin release of more than 90 % after 48 h. Compared to G1, G2 demonstrated good antibacterial activity (>3 cm) against E. Coli and S. aureous (P 0.05). Furthermore, the in-vivo study approved that G2 accelerated wound healing in full-thickness wounds, compared to the control groups, with notable wound size reduction (8 mm), epithelialization, and collagen formation. The findings support the use of this simple but potent electrospun wound dressing for the healing of full-thickness wounds.

Keywords