Insights gained from single-cell RNA analysis of murine endothelial cells in aging hearts
Zhong Liu,
Yanjing Huang,
Dongliang Wang,
Mengke Li,
Qikai Zhang,
Caineng Pan,
Yuheng Lin,
Yuanting Luo,
Zhuoxing Shi,
Ping Zhang,
Yingfeng Zheng
Affiliations
Zhong Liu
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China
Yanjing Huang
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
Dongliang Wang
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
Mengke Li
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
Qikai Zhang
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
Caineng Pan
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
Yuheng Lin
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
Yuanting Luo
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
Zhuoxing Shi
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
Ping Zhang
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Corresponding author.
Yingfeng Zheng
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China; Corresponding author. State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
Aging is the strongest risk factor for cardiovascular disease, with progressive decline in the function of vascular endothelial cells (ECs) with age. Systematic analyses of the effects of aging on different cardiac EC types remain limited. Here, we constructed a scRNA atlas of EC transcriptomes in young and old mouse hearts. We identified 10 EC subclusters. The multidimensionally differential genes (DEGs) analysis across different EC clusters shows molecular changes with aging, showing the increase in the overall inflammatory microenvironment and the decrease in angiogenesis and cytoskeletal support capacity of aged ECs. And we performed an in-depth analysis of 3 special ECs, Immunology, Proliferating and Angiogenic. The Immunology EC seems highly associated with some immune regulatory functions, which decline with aging at different degrees. Analysis of two types of neovascular ECs, Proliferating, Angiogenic, implied that Angiogenic ECs can differentiate into multiple EC directions after initially originating from proliferating ECs. And aging leads to a decrease in the ability of vascular angiogenesis and differentiation. Finally, we summarized the effects of aging on cell signaling communication between different EC clusters. This cardiac EC atlas offers comprehensive insights into the molecular regulations of cardiovascular aging, and provides new directions for the prevention and treatment of age-related cardiovascular disease.