Meitan kexue jishu (Oct 2023)

Numerical study on anti-impact characteristics of energy absorbing column with multicellular square tube filled with aluminum foam

  • Xiaochun XIAO,
  • Heng ZHU,
  • Jun XU,
  • Yufeng FAN,
  • Ziyang LI,
  • Yun LEI

DOI
https://doi.org/10.13199/j.cnki.cst.2022-1608
Journal volume & issue
Vol. 51, no. 10
pp. 302 – 311

Abstract

Read online

Aiming at the insufficient anti-impact performance of existing components of the energy-absorbing anti-impact support, a foam aluminum filled multicellular square tube structure is proposed. According to the axial energy absorption theory of thin-walled structures filled with foam materials, the formula of average crushing load is obtained. The axial impact simulation of square tube, multicellular square tube and foam aluminum filled multicellular square tube are completed by using ABAQUS/Explicit. On this basis, the impact resistance of ordinary hydraulic column and energy absorbing hydraulic column is analyzed. The results showed that compared with the square tube and multicellular square tube, the foam aluminum filled multicellular square tube has an ideal axisymmetric progressive deformation. The initial load peak value, load bearing-mean and energy absorption are greatly improved, the effective deformation distance is reduced, the load fluctuation is reduced, and the load carrying efficiency is improved. With the increase of foam aluminum filling ratio, the effective deformation distance and energy absorption of the component are reduced. As the porosity of aluminum foam decreases, the force variance decreases, and energy absorption and the load carrying efficiency increase. Aluminum foam-filled multicellular square tube with 60% porosity at 25% filling rate is an ideal energy absorption component. Ordinary column surges after impact load, bending deformation is serious, column relies on its own deformation to absorb energy, supporting effect is poor. After the energy-absorbing column is impacted, the energy absorption component begins to deform and absorb energy. Greatly reduce the load of the column, absorb most of the outside impact energy, avoid the column bending deformation, improve the impact resistance of the support.

Keywords