IMA Fungus (May 2025)
Multi-omics insights into growth and fruiting body development in the entomopathogenic fungus Cordyceps blackwelliae
Abstract
Read online Read online Read online
Cordyceps blackwelliae is an entomopathogenic fungus with significant potential for research and development due to its ease of cultivation. However, the lack of omics-based studies has limited our understanding of the molecular mechanisms governing its growth and fruiting body development. This study employed a multi-omics approach, integrating genomic, transcriptomic and metabolomic analyses. Utilising both Illumina and Nanopore sequencing technologies, we assembled a 31.06 Mb nuclear genome comprising 11 scaffolds, with telomere presence at one or both ends in eight scaffolds and annotated 8,138 identified genes (8,136 from genome prediction and two from local BLAST searches). Transcriptomic analysis identified 2,078 differentially expressed genes across three developmental stages: liquid culture mycelia, wheat culture mycelia and fruiting bodies. Amongst these, 745 genes were up-regulated in fruiting bodies, primarily associated with biosynthetic and catabolic pathways. Metabolomic analysis identified 1,161 metabolites, with 1,014 showing significant variations across developmental stages. Integrated transcriptomic and metabolomic analyses uncovered 17 genes positively correlated with 34 metabolites, which are likely crucial regulators of fruiting body development. These findings provide new insights into the molecular networks underlying C. blackwelliae growth and fruiting body formation.