Scientific Reports (Jul 2023)
Thermophilisation of communities differs between land plant lineages, land use types and elevation
Abstract
Abstract Bryophytes provide key ecosystem services at the global scale such as carbon storage and primary production in resource limited habitats, but compared to vascular plants knowledge on how these organisms face recent climate warming is fragmentary. This is particularly critical because bryophytes differ fundamentally from vascular plants in their ecophysiological and biological characteristics, so that community alterations most likely have different dynamics. In a comparative approach, we analysed thermophilisation of bryophyte and vascular plant communities in 1146 permanent plots distributed along an elevational gradient of nearly 3.000 m in Switzerland (Central Europe) that were visited in 5-years intervals between 2001 and 2021. We estimated thermophilisation from changes in unweighted mean temperature indicator values of species, compared it to expected thermophilisation rates given the shift of isotherms and addressed differences between the two lineages, major land use types (managed grasslands, forests, unmanaged open areas), life strategy types (long- and short-lived species) and in elevation. Thermophilisation of bryophyte communities was on average 2.1 times higher than of vascular plant communities and at high elevations it approximated the expected rate given the shift of isotherms. Thermophilisation of both, bryophyte and vascular plant communities was not driven by a loss of cryophilic species but by an increase in thermophilic and mesophilic species, indicating an in-filling process. Furthermore, our data show that thermophilisation is higher in managed grasslands than in forests. We suggest that the higher responsiveness of bryophytes compared to vascular plants depends on their poikilohydry and dispersal capacity and that lower thermophilisation of forests communities is related to the buffering effect of microclimatic conditions in the interior of forests. Our study emphasises the heterogeneity of climate warming effects on plants because response dynamics differ between taxonomic groups as well as between land use types and along elevational gradients.