Shiyou shiyan dizhi (Sep 2024)
Occurrence characteristics and genesis mechanism of pyrobitumen in Sinian Dengying to Cambrian Longwangmiao reservoirs in central Sichuan Basin
Abstract
Reservoirs in the Sinian Dengying (DY) to Lower Cambrian Longwangmiao (LWM) formations in the central Sichuan Basin exhibit evident hydrothermal activities with pyrobitumen showing signs of alterations caused by hydrothermal fluids. However, few studies have explored the relationship between hydrothermal fluid activity and the evolution of natural gas accumulation, resulting in a significant lack of understanding of oil and gas accumulation history in the DY Formation. The impact of hydrothermal fluids on oil and gas accumulation in the DY Formation is substantial, and a correct understanding of the natural gas accumulation process and the identification of favorable exploration areas in the DY Formation require further research into hydrothermal cracking gas accumulation. By examining the filling features, optical textures, and structural characteristics of pyrobitumen and conducting geochemical studies on fluid inclusions trapped by hydrothermal minerals, this study explored the genesis of pyrobitumen in the DY to LWM formations. The relationship between hydrothermal fluid activity and oil cracking was also analyzed. The the pyrobitumen in the DY to LWM formations in the central Sichuan Basin were formed during hydrothermal fluid activity, exhibiting the same optical anisotropy characteristics as the mesophase pyrobitumen. Pyrobitumen can be divided into four types: fine-grained mosaic, medium-grained mosaic, coarse-grained mosaic, and streamline types. Its formation temperature exceeded 300 ℃, far surpassing the maximum burial temperature of the strata, indicating its hydrothermal fluid-driven genesis. The hydrothermal fluid activity occurred during the Late Permian and was related to the Emeishan mantle plume. The temperature of the hydrothermal fluids exceeded 300 ℃, leading to crude oil cracking in reservoirs of the DY to LWM formations. This study found that hydrothermal fluid activity advanced the cracking time of crude oil in the paleo reservoirs of the DY to LWM formations to the Late Permian, disrupting the existing accumulation model and helping us re-understand the evolution process of gas reservoirs and identify favorable accumulation areas.
Keywords