Transactions on Combinatorics (Jun 2021)

Matchings in regular graphs‎: ‎minimizing the partition function

  • Márton Borbényi,
  • Peter Csikvari

DOI
https://doi.org/10.22108/toc.2020.123763.1742
Journal volume & issue
Vol. 10, no. 2
pp. 73 – 95

Abstract

Read online

For a graph $G$ on $v(G)$ vertices let $m_k(G)$ denote the number of matchings of size $k$‎, ‎and consider the partition function $M_{G}(\lambda)=\sum_{k=0}^nm_k(G)\lambda^k$‎. ‎In this paper we show that if $G$ is a $d$--regular graph and $0\frac{1}{v(K_{d+1})}\ln M_{K_{d+1}}(\lambda).$$‎ ‎The same inequality holds true if $d=3$ and $\lambda<0.3575$‎. ‎More precise conjectures are also given‎.

Keywords