BMC Infectious Diseases (Oct 2007)

Rapid diagnosis of experimental meningitis by bacterial heat production in cerebrospinal fluid

  • Steinhuber Andrea,
  • Trampuz Andrej,
  • Wittwer Matthias,
  • Leib Stephen L

DOI
https://doi.org/10.1186/1471-2334-7-116
Journal volume & issue
Vol. 7, no. 1
p. 116

Abstract

Read online

Abstract Background Calorimetry is a nonspecific technique which allows direct measurement of heat generated by biological processes in the living cell. We evaluated the potential of calorimetry for rapid detection of bacterial growth in cerebrospinal fluid (CSF) in a rat model of bacterial meningitis. Methods Infant rats were infected on postnatal day 11 by direct intracisternal injection with either Streptococcus pneumoniae, Neisseria meningitidis or Listeria monocytogenes. Control animals were injected with sterile saline or heat-inactivated S. pneumoniae. CSF was obtained at 18 hours after infection for quantitative cultures and heat flow measurement. For calorimetry, 10 μl and 1 μl CSF were inoculated in calorimetry ampoules containing 3 ml trypticase soy broth (TSB). Results The mean bacterial titer (± SD) in CSF was 1.5 ± 0.6 × 108 for S. pneumoniae, 1.3 ± 0.3 × 106 for N. meningitidis and 3.5 ± 2.2 × 104 for L. monocytogenes. Calorimetric detection time was defined as the time until heat flow signal exceeded 10 μW. Heat signal was detected in 10-μl CSF samples from all infected animals with a mean (± SD) detection time of 1.5 ± 0.2 hours for S. pneumoniae, 3.9 ± 0.7 hours for N. meningitidis and 9.1 ± 0.5 hours for L. monocytogenes. CSF samples from non-infected animals generated no increasing heat flow (S. pneumoniae ranging from 6.7 to 7.5 Joules, followed by L. monocytogenes (5.6 to 6.1 Joules) and N. meningitidis (3.5 to 4.4 Joules). The lowest detectable bacterial titer by calorimetry was 2 cfu for S. pneumoniae, 4 cfu for N. meningitidis and 7 cfu for L. monocytogenes. Conclusion By means of calorimetry, detection times of S. pneumoniae and N. meningitidis and Listeria monocytogenes using as little as 10 μl CSF were achieved. Calorimetry is a new diagnostic method allowing rapid and accurate diagnosis of bacterial meningitis from a small volume of CSF.