Microbiology Spectrum (Jun 2025)

The impact of temperature and insect-specific viruses on the transmission of alphaviruses by Aedes japonicus japonicus

  • Stephanie Jansen,
  • Dániel Cadar,
  • Jana Christina Hey,
  • Michelle Helms,
  • Unchana Lange,
  • Balázs Horváth,
  • Hanna Jöst,
  • Wolf-Peter Pfitzner,
  • Jonas Schmidt-Chanasit,
  • Renke Lühken,
  • Anna Heitmann

DOI
https://doi.org/10.1128/spectrum.02668-24
Journal volume & issue
Vol. 13, no. 6

Abstract

Read online

ABSTRACT Arthropod-borne virus (arbovirus) infections are increasing globally, and invasive mosquito species are spreading. Since the end of the last century, Aedes japonicus has continued to spread in Europe as well as in North America. Aedes japonicus is known to be able to transmit several viruses, but extensive information about the vector competence of Ae. japonicus for alphaviruses is missing. Therefore, we infected field-caught Ae. japonicus mosquitoes from Germany with different alphaviruses that occur in areas with either tropical or moderate temperatures and are clustered as arthritogenic or encephalitic alphaviruses. Additionally, we studied the influence of temperature and natural infections with insect-specific viruses (ISVs) on the vector competence of Ae. japonicus. Transmission of chikungunya virus was exclusively observed at the high-temperature profile of 27° ± 5°C, with a low transmission rate of 2.9%. Transmission of Sindbis virus and western equine encephalitis virus was observed at all investigated temperature profiles with higher transmission rates of 32%–57%. We identified seven different ISVs in the investigated Ae. japonicus mosquitoes, showing that coinfections with ISVs are very common. The interplay between arbovirus infections and concurrent multiple ISV infections is highly complex, and additional research is required to fully elucidate the detailed mechanisms underlying the outcomes of this study.IMPORTANCEThe spread of invasive mosquito species like Aedes japonicus poses a significant public health risk, particularly in the context of rising global temperatures and the growing prevalence of arbovirus infections. This study provides critical insights into the ability of Aedes japonicus to transmit alphaviruses such as chikungunya, Sindbis, and western equine encephalitis under different temperature conditions. The identification of multiple insect-specific viruses co-infecting the mosquitoes highlights the complexity of arbovirus transmission and underscores the need for further research. Understanding the interplay between environmental factors like temperature and viral coinfections is essential for predicting and mitigating future outbreaks. This work advances our knowledge of vector competence, which is helpful for developing strategies for risk assessment.

Keywords