Nature Communications (Oct 2018)

Genetic signature to provide robust risk assessment of psoriatic arthritis development in psoriasis patients

  • Matthew T. Patrick,
  • Philip E. Stuart,
  • Kalpana Raja,
  • Johann E. Gudjonsson,
  • Trilokraj Tejasvi,
  • Jingjing Yang,
  • Vinod Chandran,
  • Sayantan Das,
  • Kristina Callis-Duffin,
  • Eva Ellinghaus,
  • Charlotta Enerbäck,
  • Tõnu Esko,
  • Andre Franke,
  • Hyun M. Kang,
  • Gerald G. Krueger,
  • Henry W. Lim,
  • Proton Rahman,
  • Cheryl F. Rosen,
  • Stephan Weidinger,
  • Michael Weichenthal,
  • Xiaoquan Wen,
  • John J. Voorhees,
  • Gonçalo R. Abecasis,
  • Dafna D. Gladman,
  • Rajan P. Nair,
  • James T. Elder,
  • Lam C. Tsoi

DOI
https://doi.org/10.1038/s41467-018-06672-6
Journal volume & issue
Vol. 9, no. 1
pp. 1 – 10

Abstract

Read online

Approximately 30% of psoriasis patients develop psoriatic arthritis (PsA) and early diagnosis is crucial for the management of PsA. Here, Patrick et al. develop a computational pipeline involving statistical and machine-learning methods that can assess the risk of progression to PsA based on genetic markers.