Environment International (Dec 2018)
Longitudinal trends of per- and polyfluoroalkyl substances in children's serum
Abstract
Studies suggest negative health impacts from early life exposure to per- and polyfluoroalkyl substances (PFASs). However, information on longitudinal exposure to PFASs during childhood is scarce for background-exposed individuals. This study sought to fill this gap by investigating children's longitudinal exposure trends through measurement of PFAS serum concentrations and calculation of body burdens (μg, total in body). Blood of 54 Finnish children was sampled 2005–2015 and analyzed for 20 PFASs at 1, 6 and 10.5 years of age. The body burden was calculated by multiplying the serum concentration by the volume of distribution and the bodyweight for each individual. Associations between serum concentrations or body burdens and parameters, such as sex, breastfeeding duration, body mass index as well as indoor dust and air PFAS concentrations, were evaluated. Serum concentrations of perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorohexane sulfonic acid (PFHxS) decreased significantly (p < 0.001) with age. In contrast to serum concentrations, body burdens stayed unchanged or even increased significantly (p < 0.05), except for PFOA in female children. Breastfeeding duration was positively correlated (p < 0.001) with serum concentrations of PFHxS, PFOS, PFOA and PFNA at 1 year of age. Some associations were found at 10.5 years with sex and indoor PFAS concentrations. Observations of longitudinal decreasing trends of serum concentrations can be misleading for understanding exposure levels from external media during childhood, as the serum concentration is influenced by parallel temporal changes and growth dilution. Body burdens account for growth dilution and thus better reflect differences in early-life to adolescence exposure than serum concentrations. Keywords: Perfluoroalkyl, Serum, PFAS, PFAA, Biomonitoring, Child, Body burden, Growth dilution