Metabolic Engineering Communications (Dec 2021)

Production of raspberry ketone by redirecting the metabolic flux to the phenylpropanoid pathway in tobacco plants

  • Takao Koeduka,
  • Sachiho Takarada,
  • Koya Fujii,
  • Akifumi Sugiyama,
  • Kazufumi Yazaki,
  • Masahiro Nishihara,
  • Kenji Matsui

Journal volume & issue
Vol. 13
p. e00180

Abstract

Read online

Raspberry ketone is one of the characteristic flavors of raspberry fruits, and it is an important and expensive ingredient in the flavor and fragrance industries. It is present at low levels in plant tissues, and its occurrence is limited to a few taxa. In this context, the stable production of nature-identical raspberry ketone using heterologous synthesis in plants hosts has recently garnered the attention of plant biochemists. In this study, we demonstrate the rational switching of the metabolic flow from anthocyanin pigments to volatile phenylbutanoid production via the phenylpropanoid pathway. This shift led to the efficient and stable production of raspberry ketone and its glycosides via heterologous expression of the biosynthetic enzymes benzalacetone synthase (BAS) and raspberry ketone/zingerone synthase 1 (RZS1) in the transgenic tobacco (Nicotiana tabacum ‘Petit Havana SR-1’). Additionally, we achieved improved product titers by activating the phenylpropanoid pathway with the transcriptional factor, production of anthocyanin pigment 1 (PAP1), from Arabidopsis thaliana. We further demonstrated another metabolic-flow switching by RNA interference (RNAi)-mediated silencing of chalcone synthase (CHS) to increase pathway-intermediate p-coumaroyl-CoA in transgenic tobacco for raspberry-ketone production. The redirection of metabolic flux resulted in transgenic lines producing 0.45 μg/g of raspberry ketone and 4.5 μg/g, on the fresh weight basis, of its glycosides in the flowers. These results suggest that the intracellular enforcement of endogenous substrate supply is an important factor while engineering the phenylpropanoid pathway. This strategy might be useful for the production of other phenylpropanoids/polyketides that are produced via the pathway-intermediate p-coumaroyl-CoA, in tobacco plants.

Keywords