Computational and Structural Biotechnology Journal (Dec 2024)

Tailoring hydrophobicity and strength in spider silk-inspired coatings via thermal treatments

  • Anni Seisto,
  • Anna S. Borisova,
  • Robert Pylkkänen,
  • Pezhman Mohammadi

Journal volume & issue
Vol. 25
pp. 177 – 185

Abstract

Read online

The advent of advanced coatings has transformed material functionalities, extending their roles from basic coverage and visual appeal to include unique properties such as self-healing, superior hydrophobicity, and antimicrobial action. However, the traditional dependency on petrochemical-derived materials for these coatings raises environmental concerns. This study proposes the use of renewable and alternative materials for coating development. We present the use of bioengineered spider silk-inspired protein (SSIP), produced through recombinant technology, as a viable, eco-friendly alternative due to their ease of processing under ambient pressure and the utilization of water as a solvent, alongside their exceptional physicochemical properties. Our research investigates the effects of different thermal treatments and protein concentrations on the mechanical strength and surface water repellency of coatings on silica bases. Our findings reveal a direct correlation between the temperature of heat treatment and the enhancements in surface hydrophobicity and mechanical strength, where elevated temperatures facilitate increased resistance to water and improved mechanical integrity. Consequently, we advocate SSIPs present a promising, sustainable choice for advanced coatings, providing a pathway to fine-tune coating recipes for better mechanical and hydrophobic properties with a reduced ecological footprint, finding potential uses in various fields such as electronics.

Keywords