Biotechnology for Biofuels (Jan 2020)

Plant hormone induced enrichment of Chlorella sp. omega-3 fatty acids

  • Ramachandran Sivaramakrishnan,
  • Aran Incharoensakdi

DOI
https://doi.org/10.1186/s13068-019-1647-9
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Background Omega-3 fatty acids have various health benefits in combating against neurological problems, cancers, cardiac problems and hypertriglyceridemia. The main dietary omega-3 fatty acids are obtained from marine fish. Due to the pollution of marine environment, recently microalgae are considered as the promising source for the omega-3 fatty acid production. However, the demand and high production cost associated with microalgal biomass make it necessary to implement novel strategies in improving the biomass and omega-3 fatty acids from microalgae. Results Four plant hormones zeatin, indole acetic acid (IAA), gibberellic acid (GBA) and abscisic acid (ABA) were investigated for their effect on the production of biomass and lipid in isolated Chlorella sp. The cells showed an increase of the biomass and lipid content after treatments with the plant hormones where the highest stimulatory effect was observed in ABA-treated cells. On the other hand, IAA showed the highest stimulatory effect on the omega-3 fatty acids content, eicosapentaenoic acid (EPA) (23.25%) and docosahexaenoic acid (DHA) (26.06%). On the other hand, cells treated with ABA had highest lipid content suitable for the biodiesel applications. The determination of ROS markers, antioxidant enzymes, and fatty acid biosynthesis genes after plant hormones treatment helped elucidate the mechanism underlying the improvement in biomass, lipid content and omega-3 fatty acids. All four plant hormones upregulated the fatty acid biosynthesis genes, whereas IAA particularly increased omega-3-fatty acids as a result of the upregulation of omega-3 fatty acid desaturase. Conclusions The contents of omega-3 fatty acids, the clinically important compounds, were considerably improved in IAA-treated cells. The highest lipid content obtained from ABA-treated biomass can be used for biodiesel application according to its biodiesel properties. The EPA and DHA enriched ethyl esters are an approved form of omega-3 fatty acids by US Food and Drug Administration (FDA) which can be utilized as the therapeutic treatment for the severe hypertriglyceridemia.

Keywords