PLoS Genetics (May 2023)

Taste and pheromonal inputs govern the regulation of time investment for mating by sexual experience in male Drosophila melanogaster.

  • Seung Gee Lee,
  • Dongyu Sun,
  • Hongyu Miao,
  • Zekun Wu,
  • Changku Kang,
  • Baraa Saad,
  • Khoi-Nguyen Ha Nguyen,
  • Adrian Guerra-Phalen,
  • Dorothy Bui,
  • Al-Hassan Abbas,
  • Brian Trinh,
  • Ashvent Malik,
  • Mahdi Zeghal,
  • Anne-Christine Auge,
  • Md Ehteshamul Islam,
  • Kyle Wong,
  • Tiffany Stern,
  • Elizabeth Lebedev,
  • Thomas N Sherratt,
  • Woo Jae Kim

DOI
https://doi.org/10.1371/journal.pgen.1010753
Journal volume & issue
Vol. 19, no. 5
p. e1010753

Abstract

Read online

Males have finite resources to spend on reproduction. Thus, males rely on a 'time investment strategy' to maximize their reproductive success. For example, male Drosophila melanogaster extends their mating duration when surrounded by conditions enriched with rivals. Here we report a different form of behavioral plasticity whereby male fruit flies exhibit a shortened duration of mating when they are sexually experienced; we refer to this plasticity as 'shorter-mating-duration (SMD)'. SMD is a plastic behavior and requires sexually dimorphic taste neurons. We identified several neurons in the male foreleg and midleg that express specific sugar and pheromone receptors. Using a cost-benefit model and behavioral experiments, we further show that SMD behavior exhibits adaptive behavioral plasticity in male flies. Thus, our study delineates the molecular and cellular basis of the sensory inputs required for SMD; this represents a plastic interval timing behavior that could serve as a model system to study how multisensory inputs converge to modify interval timing behavior for improved adaptation.