Environment International (Mar 2020)

Insights into biomonitoring of human exposure to polycyclic aromatic hydrocarbons with hair analysis: A case study in e-waste recycling area

  • Meiqing Lin,
  • Jian Tang,
  • Shengtao Ma,
  • Yingxin Yu,
  • Guiying Li,
  • Ruifang Fan,
  • Bixian Mai,
  • Taicheng An

Journal volume & issue
Vol. 136

Abstract

Read online

In this study, 96 pairs of hair and urine samples were collected from e-waste (EW) dismantling workers of an industrial park, as well as residents living in surrounding areas. The concentrations of polycyclic aromatic hydrocarbons (PAHs) and hydroxylated PAH metabolites (OH-PAHs) were analyzed . The results show that concentrations of Σ15PAHs ranged from 6.24 to 692 ng/g dry weight (dw) and Σ12OH-PAHs from undetected to 187 ng/g dw in hair external (hair-Ex), and ranged from 31.7 to 738 ng/g dw and 21.6 to 1887 ng/g dw in hair internal (hair-In). There was no significant difference in exposure levels between EW dismantling workers and residents of the surrounding area. For the parent PAHs, the concentrations of Σ15PAHs of hair-In were comparable with those of hair-Ex for all populations except for the child residents. On the contrary, for the OH-PAHs, the concentrations of Σ12OH-PAHs of hair-In were 9–37 times higher than those of hair-Ex for populations. Moreover, the congener profiles of OH-PAHs of hair-In were different from those of hair-Ex, but similar to that of urine. Particularly, 3-OH-Bap, which is a carcinogenic metabolite, was only detected in the hair-In. These results indicate that OH-PAHs in hair-In, just like in urine, are mainly derived from endogenous metabolism and could be considered as reliable biomarkers for PAHs exposure. However, there was almost no significant correlations between hair-In and urine for OH-PAHs. This indicates that more attention should be paid to OH-PAHs when conducting PAHs exposure risk assessment using hair, which will help to obtain more reliable and comprehensive information on health risk assessments. Keywords: Hair analysis, Human biomonitoring, Polycyclic aromatic hydrocarbons, Hydroxylated polycyclic aromatic hydrocarbons, E-waste exposure