BMC Medical Ethics (Nov 2022)
“I don’t think people are ready to trust these algorithms at face value”: trust and the use of machine learning algorithms in the diagnosis of rare disease
Abstract
Abstract Background As the use of AI becomes more pervasive, and computerised systems are used in clinical decision-making, the role of trust in, and the trustworthiness of, AI tools will need to be addressed. Using the case of computational phenotyping to support the diagnosis of rare disease in dysmorphology, this paper explores under what conditions we could place trust in medical AI tools, which employ machine learning. Methods Semi-structured qualitative interviews (n = 20) with stakeholders (clinical geneticists, data scientists, bioinformaticians, industry and patient support group spokespersons) who design and/or work with computational phenotyping (CP) systems. The method of constant comparison was used to analyse the interview data. Results Interviewees emphasized the importance of establishing trust in the use of CP technology in identifying rare diseases. Trust was formulated in two interrelated ways in these data. First, interviewees talked about the importance of using CP tools within the context of a trust relationship; arguing that patients will need to trust clinicians who use AI tools and that clinicians will need to trust AI developers, if they are to adopt this technology. Second, they described a need to establish trust in the technology itself, or in the knowledge it provides—epistemic trust. Interviewees suggested CP tools used for the diagnosis of rare diseases might be perceived as more trustworthy if the user is able to vouchsafe for the technology’s reliability and accuracy and the person using/developing them is trusted. Conclusion This study suggests we need to take deliberate and meticulous steps to design reliable or confidence-worthy AI systems for use in healthcare. In addition, we need to devise reliable or confidence-worthy processes that would give rise to reliable systems; these could take the form of RCTs and/or systems of accountability transparency and responsibility that would signify the epistemic trustworthiness of these tools. words 294.
Keywords