PLoS ONE (Jan 2024)
Semiparametric modeling for the cardiometabolic risk index and individual risk factors in the older adult population: A novel proposal.
Abstract
The accurate monitoring of metabolic syndrome in older adults is relevant in terms of its early detection, and its management. This study aimed at proposing a novel semiparametric modeling for a cardiometabolic risk index (CMRI) and individual risk factors in older adults.MethodsMultivariate semiparametric regression models were used to study the association between the CMRI with the individual risk factors, which was achieved using secondary analysis the data from the SABE study (Survey on Health, Well-Being, and Aging in Colombia, 2015).ResultsThe risk factors were selected through a stepwise procedure. The covariates included showed evidence of non-linear relationships with the CMRI, revealing non-linear interactions between: BMI and age (pConclusionsSemiparametric modeling explained 24.5% of the observed deviance, which was higher than the 18.2% explained by the linear model.