Sensing and Bio-Sensing Research (Jun 2020)

Paper-based (bio)sensor for label-free detection of 3-nitrotyrosine in human urine samples using molecular imprinted polymer

  • Gabriela V. Martins,
  • Ana C. Marques,
  • Elvira Fortunato,
  • M. Goreti F. Sales

Journal volume & issue
Vol. 28

Abstract

Read online

Over the last years, paper technology has been widely spread as a more affordable, sustainable and reliable support material to be incorporated in the design of point-of-care (POC) diagnostic devices. However, the single work employing a paper-based device for 3-nitrotyrosine (3-NT), a relevant biomarker for oxidative stress (OS) that is a major origin for many diseases, is incapable of reading successfully complex samples because every species that oxidizes before ~0.75 V will also contribute to the final response. Thus, the introduction of a selective element was made into this set-up by including a molecularly-imprinted polymer (MIP) tailored in-situ.Herein, a novel MIP for 3-NT was assembled directly on a paper platform, made conductive with carbon ink and suitable for an electrochemical transduction. The biomimetic material was produced by electropolymerization of phenol after optimizing several experimental parameters, such a scan-rate, number of cycles, range of potential applied, monomer and template concentrations. Under optimal conditions, the label-free sensor was able to respond to 3-NT from 500 nM to 1 mM, yielding a limit of detection of 22.3 nM. Finally, the applicability of the (bio)sensor was tested by performing calibration assays in human urine samples and a good performance was obtained in terms of sensitivity, selectivity and reproducibility.Overall, the attributes of the herein described sensing approach can be compared to a very limited number of other electrochemical devices, that are still using a conventional three electrode system, making this paper-sustained device the first electrochemical (bio)sensor with potential to become a portable and low-cost diagnostic tool for 3-NT. In general, the incorporation of molecular imprinting technology coupled to electrochemical transduction enabled the fabrication of suitable smart sensors for wide screening approaches. Keywords: 3-nitrotyrosine, Molecular imprinted polymer, Electrochemical (bio)sensor, Urine biomarker, Carbon-printed electrode