International Journal of Rotating Machinery (Jan 2001)

Fluid Flow and Heat Transfer in an Internal Coolant Passage

  • Tom I.-P. Shih,
  • Yu-Liang Lin,
  • Mark A. Stephens

DOI
https://doi.org/10.1155/S1023621X0100029X
Journal volume & issue
Vol. 7, no. 5
pp. 351 – 364

Abstract

Read online

Computations were performed to study the three-dimensional flow and heat transfer in a U-shaped duct of square cross section with inclined ribs on two opposite walls under rotating and non-rotating conditions. Two extreme limits in the Reynolds number (25,000 and 350,000) were investigated. The rotation numbers investigated are 0, 0.24, and 0.039. Results show rotation and the bend to reinforce secondary flows that align with it and to retard those that do not. Rotation was found to affect significantly the flow and heat transfer in the bend even at a very high Reynolds number of 350,000 and a very low Rotation number of 0:039. When there is no rotation, the flow and heat transfer in the bend were dominated by rib-induced secondary flows at the high Reynolds number limit and by bend-induced pressure-gradients at the low Reynolds number limit. Long streaks of reduced surface heat transfer occur in the bend at locations where streamlines from two contiguous secondary flows merge and then flow away from the surface. The location and size of these streaks varied markedly with Reynolds and rotation numbers.

Keywords