Cells (Oct 2024)

Mechanism of Marinobufagenin-Induced Hyperpermeability of Human Brain Microvascular Endothelial Cell Monolayer: A Potential Pathogenesis of Seizure in Preeclampsia

  • Ahmed F. Pantho,
  • Manisha Singh,
  • Syeda H. Afroze,
  • Kelsey R. Kelso,
  • Jessica C. Ehrig,
  • Niraj Vora,
  • Thomas J. Kuehl,
  • Steven R. Lindheim,
  • Mohammad N. Uddin

DOI
https://doi.org/10.3390/cells13211800
Journal volume & issue
Vol. 13, no. 21
p. 1800

Abstract

Read online

Preeclampsia (preE) is a hypertensive disorder in pregnancies. It is the third leading cause of mortality among pregnant women and fetuses worldwide, and there is much we have yet to learn about its pathophysiology. One complication includes cerebral edema, which causes a breach of the blood–brain barrier (BBB). Urinary marinobufagenin (MBG) is elevated in a preE rat model prior to developing hypertension and proteinuria. We investigated what effect MBG has on the endothelial cell permeability of the BBB. Human brain microvascular endothelial cells (HBMECs) were utilized to examine the permeability caused by MBG. The phosphorylation of ERK1/2, Jnk, p38, and Src was evaluated after the treatment with MBG. Apoptosis was evaluated by examining caspase 3/7. MBG ≥ 1 nM inhibited the proliferation of HBMECs by 46–50%. MBG induced monolayer permeability, causing a decrease in the phosphorylation of ERK1/2 and the activated phosphorylation of Jnk, p38, and Src. MBG increased the caspase 3/7 expression, indicating the activation of apoptosis. Apoptotic signaling or the disruption of endothelia tight junction proteins was not observed when using the p38 inhibitor as a pretreatment in MBG-treated cells. The MBG-induced enhancement of the HBMEC monolayer permeability occurs by the downregulation of ERK1/2, the activation of Jnk, p38, Src, and apoptosis, resulting in the cleavage of tight junction proteins, and are attenuated by p38 inhibition.

Keywords