Animals (Nov 2023)

Salivary Cystatin-L2-like of <i>Varroa destructor</i> Causes Lower Metabolism Activity and Abnormal Development in <i>Apis mellifera</i> Pupae

  • He Zhou,
  • Xinle Duan,
  • Chaoxia Sun,
  • Hongji Huang,
  • Mei Yang,
  • Shaokang Huang,
  • Jianghong Li

DOI
https://doi.org/10.3390/ani13233660
Journal volume & issue
Vol. 13, no. 23
p. 3660

Abstract

Read online

Varroa destructor injects a salivary secretion into honeybees during their feeding process. The salivary secretion plays a vital role in mite–bee interactions and is the main cause of honeybee illness. To determine the biological function of cystatin-L2-like, one of the components of V. destructor salivary secretion, its gene expression in mites during the reproductive phase and dispersal phase was quantified using RT-qPCR, respectively. Moreover, the E. coli-expressed and -purified cystatin was injected into the white-eyed honeybee pupae, and its effects on the survival, the weight of the newly emerged bee, and the transcriptome were determined. The results showed that cystatin was significantly upregulated in mites during the reproductive phase. Cystatin significantly shortened the lifespan of pupae and decreased the weight of the newly emerged bees. Transcriptome sequencing showed that cystatin upregulated 1496 genes and downregulated 1483 genes in pupae. These genes were mainly enriched in ATP synthesis, the mitochondrial respiratory chain, and cuticle structure and function. Cystatin comprehensively downregulated the metabolism of carbohydrates, fatty acids, and amino acids, and energy production in the pupae. The downregulation of metabolic activity could save more nutrients and energy for V. destructor, helping it to maximize its reproduction potential, implying that the mite could manipulate the metabolism of host bees through the injected salivary secretion. The results provide new insights into mite–bee interactions, providing a basis for related studies and applications.

Keywords