Active Fault-Tolerant Control Applied to a Pressure Swing Adsorption Process for the Production of Bio-Hydrogen
Gerardo Ortiz Torres,
Jesse Yoe Rumbo Morales,
Moises Ramos Martinez,
Jorge Salvador Valdez-Martínez,
Manuela Calixto-Rodriguez,
Estela Sarmiento-Bustos,
Carlos Alberto Torres Cantero,
Hector Miguel Buenabad-Arias
Affiliations
Gerardo Ortiz Torres
Centro Universitario de los Valles, Universidad de Guadalajara, Carretera Guadalajara-Ameca Km 45.5, Ameca 46600, Mexico
Jesse Yoe Rumbo Morales
Centro Universitario de los Valles, Universidad de Guadalajara, Carretera Guadalajara-Ameca Km 45.5, Ameca 46600, Mexico
Moises Ramos Martinez
Centro Universitario de los Valles, Universidad de Guadalajara, Carretera Guadalajara-Ameca Km 45.5, Ameca 46600, Mexico
Jorge Salvador Valdez-Martínez
División Académica de Mecánica Industrial, Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Av. Universidad Tecnológica No. 1, Col. Palo Escrito, Emiliano Zapata 62760, Mexico
Manuela Calixto-Rodriguez
División Académica de Mecánica Industrial, Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Av. Universidad Tecnológica No. 1, Col. Palo Escrito, Emiliano Zapata 62760, Mexico
Estela Sarmiento-Bustos
División Académica de Mecánica Industrial, Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Av. Universidad Tecnológica No. 1, Col. Palo Escrito, Emiliano Zapata 62760, Mexico
Carlos Alberto Torres Cantero
Tecnológico Nacional de México Campus Colima, Avenida Universidad 333, Villa de Álvarez 28976, Mexico
Hector Miguel Buenabad-Arias
División Académica de Mecánica Industrial, Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Av. Universidad Tecnológica No. 1, Col. Palo Escrito, Emiliano Zapata 62760, Mexico
Pressure swing adsorption (PSA) technology is used in various applications. PSA is a cost-effective process with the ability to produce high-purity bio-hydrogen (99.99%) with high recovery rates. In this article, a PSA process for the production of bio-hydrogen is proposed; it uses two columns packed with type 5A zeolite, and it has a four-step configuration (adsorption, depressurization, purge, and repressurization) for bio-hydrogen production and regeneration of the beds. The aim of this work is to design and use an active fault-tolerant control (FTC) controller to raise and maintain a stable purity of 0.9999 in molar fraction (99.99%), even with the occurrence of actuator faults. To validate the robustness and performance of the proposed discrete FTC, it has been compared with a discrete PID (proportional–integral–derivative) controller in the presence of actuator faults and trajectory changes. Both controllers achieve to maintain stable purity by reducing the effect of faults; however, the discrete PID controller is not robust to multiple faults since the desired purity is lost and fails to meet international standards to be used as bio-fuel. On the other hand, the FTC scheme reduces the effects of individual and multiple faults by striving to maintain a purity of 0.9999 in molar fraction and complying with international standards to be used as bio-fuel.