Jisuanji kexue yu tansuo (Jan 2024)
Dual Features Local-Global Attention Model with BERT for Aspect Sentiment Analysis
Abstract
Aspect-based sentiment analysis aims to predict the sentiment polarity of a specific aspect in a sentence or document. Most of recent research uses attention mechanism to model the context. But there is a problem in that the context information needs to be considered according to different contexts when the BERT model is used to calculate the dependencies between representations to extract features by sentiment classification models, which leads to the lack of contextual knowledge of the modelled features. And the importance of aspect words is not given more attention, affecting the overall classification performance of the model. To address the problems above, this paper proposes a dual features local-global attention model with BERT (DFLGA-BERT). Local and global feature extraction modules are designed respectively to fully capture the semantic association between aspect words and context. Moreover, an improved quasi-attention mechanism is used in DFLGA-BERT, which leads to the model using minus attention in the fusion of attention to weaken the effect of noise on classification in the text. The feature fusion structure of local and global features is designed to better integrate regional and global features based on conditional layer normalization (CLN). Experiments are conducted on the SentiHood and SemEval 2014 Task 4 datasets. Experimental results show that the performance of the proposed model is significantly improved compared with the baselines after incorporating contextual features.
Keywords