Sensors (Jul 2022)
Reliability-Based Large-Vocabulary Audio-Visual Speech Recognition
Abstract
Audio-visual speech recognition (AVSR) can significantly improve performance over audio-only recognition for small or medium vocabularies. However, current AVSR, whether hybrid or end-to-end (E2E), still does not appear to make optimal use of this secondary information stream as the performance is still clearly diminished in noisy conditions for large-vocabulary systems. We, therefore, propose a new fusion architecture—the decision fusion net (DFN). A broad range of time-variant reliability measures are used as an auxiliary input to improve performance. The DFN is used in both hybrid and E2E models. Our experiments on two large-vocabulary datasets, the Lip Reading Sentences 2 and 3 (LRS2 and LRS3) corpora, show highly significant improvements in performance over previous AVSR systems for large-vocabulary datasets. The hybrid model with the proposed DFN integration component even outperforms oracle dynamic stream-weighting, which is considered to be the theoretical upper bound for conventional dynamic stream-weighting approaches. Compared to the hybrid audio-only model, the proposed DFN achieves a relative word-error-rate reduction of 51% on average, while the E2E-DFN model, with its more competitive audio-only baseline system, achieves a relative word error rate reduction of 43%, both showing the efficacy of our proposed fusion architecture.
Keywords