BMC Cardiovascular Disorders (May 2023)

SYSTEMI - systemic organ communication in STEMI: design and rationale of a cohort study of patients with ST-segment elevation myocardial infarction

  • Florian Bönner,
  • Christian Jung,
  • Amin Polzin,
  • Ralf Erkens,
  • Lisa Dannenberg,
  • Rojda Ipek,
  • Madlen Kaldirim,
  • Mareike Cramer,
  • Patricia Wischmann,
  • Oana-Patricia Zaharia,
  • Christian Meyer,
  • Ulrich Flögel,
  • Bodo Levkau,
  • Axel Gödecke,
  • Jens Fischer,
  • Nicolaj Klöcker,
  • Martina Krüger,
  • Michael Roden,
  • Malte Kelm

DOI
https://doi.org/10.1186/s12872-023-03210-1
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background ST-segment elevation myocardial infarction (STEMI) still causes significant mortality and morbidity despite best-practice revascularization and adjunct medical strategies. Within the STEMI population, there is a spectrum of higher and lower risk patients with respect to major adverse cardiovascular and cerebral events (MACCE) or re-hospitalization due to heart failure. Myocardial and systemic metabolic disorders modulate patient risk in STEMI. Systematic cardiocirculatory and metabolic phenotyping to assess the bidirectional interaction of cardiac and systemic metabolism in myocardial ischemia is lacking. Methods Systemic organ communication in STEMI (SYSTEMI) is an all-comer open-end prospective study in STEMI patients > 18 years of age to assess the interaction of cardiac and systemic metabolism in STEMI by systematically collecting data on a regional and systemic level. Primary endpoint will be myocardial function, left ventricular remodelling, myocardial texture and coronary patency at 6 month after STEMI. Secondary endpoint will be all-cause death, MACCE, and re-hospitalisation due to heart failure or revascularisation assessed 12 month after STEMI. The objective of SYSTEMI is to identify metabolic systemic and myocardial master switches that determine primary and secondary endpoints. In SYSTEMI 150–200 patients are expected to be recruited per year. Patient data will be collected at the index event, within 24 h, 5 days as well as 6 and 12 months after STEMI. Data acquisition will be performed in multilayer approaches. Myocardial function will be assessed by using serial cardiac imaging with cineventriculography, echocardiography and cardiovascular magnetic resonance. Myocardial metabolism will be analysed by multi-nuclei magnetic resonance spectroscopy. Systemic metabolism will be approached by serial liquid biopsies and analysed with respect to glucose and lipid metabolism as well as oxygen transport. In summary, SYSTEMI enables a comprehensive data analysis on the levels of organ structure and function alongside hemodynamic, genomic and transcriptomic information to assess cardiac and systemic metabolism. Discussion SYSTEMI aims to identify novel metabolic patterns and master-switches in the interaction of cardiac and systemic metabolism to improve diagnostic and therapeutic algorithms in myocardial ischemia for patient-risk assessment and tailored therapy. Trial registration Trial Registration Number: NCT03539133

Keywords