Children (Aug 2021)

Nephrotoxic Metal Mixtures and Preadolescent Kidney Function

  • Yuri Levin-Schwartz,
  • Maria D. Politis,
  • Chris Gennings,
  • Marcela Tamayo-Ortiz,
  • Daniel Flores,
  • Chitra Amarasiriwardena,
  • Ivan Pantic,
  • Mari Cruz Tolentino,
  • Guadalupe Estrada-Gutierrez,
  • Hector Lamadrid-Figueroa,
  • Martha M. Tellez-Rojo,
  • Andrea A. Baccarelli,
  • Robert O. Wright,
  • Alison P. Sanders

DOI
https://doi.org/10.3390/children8080673
Journal volume & issue
Vol. 8, no. 8
p. 673

Abstract

Read online

Exposure to metals including lead (Pb), cadmium (Cd), and arsenic (As), may impair kidney function as individual toxicants or in mixtures. However, no single medium is ideal to study multiple metals simultaneously. We hypothesized that multi-media biomarkers (MMBs), integrated indices combining information across biomarkers, are informative of adverse kidney function. Levels of Pb, Cd, and As were quantified in blood and urine in 4–6-year-old Mexican children (n = 300) in the PROGRESS longitudinal cohort study. We estimated the mixture effects of these metals, using weighted quantile sum regression (WQS) applied to urine biomarkers (Umix), blood biomarkers (Bmix), and MMBs, on the cystatin C-based estimated glomerular filtration rate (eGFR) and serum cystatin C assessed at 8–10 years of age, adjusted for covariates. Quartile increases in Umix and the MMB mixture were associated with 2.5% (95%CI: 0.1, 5.0) and 3.0% (95%CI: 0.2, 5.7) increased eGFR and −2.6% (95% CI: −5.1%, −0.1%) and −3.3% (95% CI: −6.5%, −0.1%) decreased cystatin C, respectively. Weights indicate that the strongest contributors to the associations with eGFR and serum cystatin C were Cd and Pb, respectively. MMBs detected mixture effects distinct from associations with individual metals or media-type, highlighting the benefits of incorporating information from multiple exposure media in mixtures analyses.

Keywords