Наукові горизонти (Feb 2020)

BIOTECHNOLOGICAL UTILIZATION OF FALLEN LEAVES

  • O. Semenova,
  • O. Semenova,
  • O. Skydan,
  • Т. Tymoshchuk,
  • V. Tkachuk

DOI
https://doi.org/10.33249/2663-2144-2020-87-02-7-14
Journal volume & issue
Vol. 87, no. 2
pp. 7 – 14

Abstract

Read online

Increase in volume of cellulose-containing waste poses a significant threat to the environment as their burning is accompanied by the emission of toxic components. It is important to find new approaches to the utilization of vegetable waste, which would have not only environmental but also economic effects. The purpose of our research was the study of methane fermentation of fallen leaves for production of high-quality and cheap biogas, as well as fermented mass for stimulation of seed germination. The authors of the article considers the possibility of using fallen leaves as an energy source for biogas production with the production of a valuable biostimulator. The experiments were carried out at a laboratory facility (methane tank and gas holder). The qualitative composition of biogas was determined by the accelerated method: passing it through a 10 % solution of sodium hydroxide. The research showed that cellulose-containing waste (fallen leaves) is subjected to periodic methane fermentation at 45 ° C. The loading dose of the leaves was 10 % of the total volume of the culture fluid. Fermentation lasted 25 days, the efficiency of biotransformation of solids reached 82 %. The pH of the mixture in the methane tank increased from 6.3 to 8.1. The authors determined that biogas yield of fallen leaf as a result of methane fermentation was 350 dm3 per 1 kg of dry matter. Methane content in biogas reached 65 %, indicating that it is worth using as an alternative fuel. The effectiveness of biomass produced under conditions of anaerobic fermentation of fallen leaves for stimulation of seed germination was under research. Processing of lawn seeds, including perennial ryegrass (Lolium perenne L.) and red fescue (Festuca rubra L.) with the biostimulator provides a 25 % increase in germination energy compared to control Stem height and root length under the influence of biostimulator increased by 28–46 % compared to the control. The prospect of further research is methane fermentation of agricultural cellulose-containing wastes, due to their volume and considerable energy potential.

Keywords