Applied Sciences (May 2020)

Efficient Molecular Aggregation of Rhodamine 6G and Pseudoisocyanine by Light-Induced Force

  • Masayuki Shirakawa,
  • Takayoshi Kobayashi,
  • Eiji Tokunaga

Journal volume & issue
Vol. 10, no. 10
p. 3563


Read online

A highly efficient light-induced aggregation of porphyrin molecules in solution was recently reported for 4-[10,15,20-tris(4-sulfophenyl)-21,24-dihydroporphyrin-5-yl]benzenesulfonic acid (TPPS). Here, we demonstrate that rhodamine 6G (R6G) and pseudoisocyanine (PIC) also show efficient light-induced aggregation in unsaturated aqueous solution, being detected with a multichannel lock-in amplifier as the absorbance decrease/increase in the monomers/aggregates, induced by a laser at 633 nm, which is non-resonant off their main monomer absorption wavelengths. The light-induced aggregation states are H-aggregates that are hardly formed in the thermal equilibrium. The similar absorbance changes are absent in the monomer molecules fixed in polyvinyl alcohol (PVA) films. The aggregation efficiency defined as ( Δ A / A ) / ( U t r a p / k B T ) , where A is the absorbance of the monomers, Δ A is the absorbance increase in the aggregates, U t r a p is the optical gradient force potential, and k B T is the thermal energy at room temperature, is approximately 100 for R6G and 500 for PIC, which are much smaller than that of TPPS.