Remote Sensing (Apr 2024)
Potential Modulation of Aerosol on Precipitation Efficiency in Southwest China
Abstract
The aerosol–cloud–precipitation correlation has been a significant scientific topic, primarily due to its remarkable uncertainty. However, the possible modulation of aerosol on the precipitation capacity of clouds has received limited attention. In this study, we utilized multi-source data on aerosol, cloud properties, precipitation, and meteorological factors to investigate the impact of aerosols on precipitation efficiency (PE) in the Sichuan Basin (SCB) and Yun-nan-Guizhou Plateau (YGP), where the differences between terrain and meteorological environment conditions were prominent. In the two study regions, there were significant negative correlations between the aerosol index (AI) and PE in spring, especially in the YGP, while the correlations between the AI and PE in other seasons were not as prominent as in spring. In spring, aerosol significantly inhibited both the liquid water path (LWP) and the ice water path (IWP) in the YGP, but negatively correlated with the IWP and had no significant relationship with the LWP in the SCB. Aerosol inhibited precipitation in the two regions mainly by reducing cloud droplet effective radius, indicating that warm clouds contributed more to precipitation in spring. The suppressive impact of aerosols on precipitation serving as the numerator of PE is greater than that of the cloud water path as the denominator of PE, resulting in a negative correlation between aerosol and PE. The AI–PE relationship is significantly dependent on meteorological conditions in the YGP, but not in the SCB, which may be related to the perennial cloud cover and stable atmosphere in the SCB. In the future, as air quality continues to improve, precipitation efficiency may increase due to the decrease in aerosol concentration, and of course, the spatio-temporal heterogeneity of the aerosol–cloud–precipitation relationship may become more significant.
Keywords