Genes and Environment (Feb 2022)
Analysis of nucleotide insertion opposite urea and translesion synthesis across urea by DNA polymerases
Abstract
Abstract Urea (Ua) is produced in DNA as the result of oxidative damage to thymine and guanine. It was previously reported that Klenow fragment (Kf) exo− incorporated dATP opposite Ua, and that DNA polymerase β was blocked by Ua. We report here the following nucleotide incorporations opposite Ua by various DNA polymerases: DNA polymerase α, dATP and dGTP (dATP > dGTP); DNA polymerase δ, dATP; DNA polymerase ζ, dATP; Kf exo−, dATP; Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4), dGTP and dATP (dGTP > dATP); and DNA polymerase η, dCTP, dGTP, dATP, and dTTP (dCTP > dGTP > dATP > dTTP). DNA polymerases β and ε were blocked by Ua. Elongation by DNA polymerases δ and ζ stopped after inserting dATP opposite Ua. Importantly, the elongation efficiency to full-length beyond Ua using DNA polymerase η and Dpo4 were almost the same as that of natural DNA. Graphical abstract
Keywords