Modelling (Aug 2024)

Enhancing Highway Driving: High Automated Vehicle Decision Making in a Complex Multi-Body Simulation Environment

  • Ali Rizehvandi,
  • Shahram Azadi,
  • Arno Eichberger

DOI
https://doi.org/10.3390/modelling5030050
Journal volume & issue
Vol. 5, no. 3
pp. 951 – 968

Abstract

Read online

Automated driving is a promising development in reducing driving accidents and improving the efficiency of driving. This study focuses on developing a decision-making strategy for autonomous vehicles, specifically addressing maneuvers such as lane change, double lane change, and lane keeping on highways, using deep reinforcement learning (DRL). To achieve this, a highway driving environment in the commercial multi-body simulation software IPG Carmaker 11 version is established, wherein the ego vehicle navigates through surrounding vehicles safely and efficiently. A hierarchical control framework is introduced to manage these vehicles, with upper-level control handling driving decisions. The DDPG (deep deterministic policy gradient) algorithm, a specific DRL method, is employed to formulate the highway decision-making strategy, simulated in MATLAB software. Also, the computational procedures of both DDPG and deep Q-network algorithms are outlined and compared. A set of simulation tests is carried out to evaluate the effectiveness of the suggested decision-making policy. The research underscores the advantages of the proposed framework concerning its convergence rate and control performance. The results demonstrate that the DDPG-based overtaking strategy enables efficient and safe completion of highway driving tasks.

Keywords