Applied Sciences (Sep 2021)
Semi-Automated Procedure to Estimate Nonlinear Kinematic Hardening Model to Simulate the Nonlinear Dynamic Properties of Soil and Rock
Abstract
The strain-dependent nonlinear properties of ground materials, such as shear modulus degradation (G/Gmax) and damping, are of significant importance in seismic-related analyses. However, the ABAQUS program lacks a comprehensive procedure to estimate parameters for a built-in model. In this study, a nonlinear kinematic hardening (NKH) model with three back-stress values was used, which allows better fitting to the backbone curves compared to the simplified nonlinear kinematic hardening (SNKH) model previously proposed. Instead of modeling in ABAQUS, a semi-automated procedure was implemented in MATLAB, which can predict shear stress–shear strain hysteretic loops, to find the fitting parameters to the target G/Gmax and/or damping curves. The procedure was applied for three soil and two rock samples, and the results indicate a good match between model and target backbone curves, which proves the application of the procedure and the NKH model in simulating the nonlinear properties of ground materials.
Keywords